
Chapter 20

Music

What does 12
√
2 have to do with music?

In the theory of music, an octave is an interval with frequencies that range
over a factor of two. In most Western music, an octave is divided into twelve
semitones with equal frequency ratios. Since twelve semitones comprise a factor of
two, one semitone is a factor of 12

√
2. And because this quantity occurs so often in

this chapter, let

σ =
12
√
2

Our Matlab programs use

sigma = 2^(1/12)

= 1.059463094359295

Think of σ as an important mathematical constant, like π and ϕ.

Keyboard
Figure 20.1 shows our miniature piano keyboard with 25 keys. This keyboard has
two octaves, with white keys labeled C D ... G A B, plus another C key. Counting
both white and black, there are twelves keys in each octave. The frequency of each
key is a semitone above and below its neighbors. Each black key can be regarded
as either the sharp of the white below it or the flat of the white above it. So the
black key between C and D is both C♯ and D♭. There is no E♯/F♭ or B♯/C♭.

A conventional full piano keyboard has 88 keys. Seven complete octaves ac-
count for 7 × 12 = 84 keys. There are three additional keys at the lower left and
one additional key at the upper end. If the octaves are numbered 0 through 8, then
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Figure 20.1. Miniature piano keyboard.

Figure 20.2. Middle C.

a key letter followed by an octave number specifies a unique key. In this notation,
two important keys are C4 and A4. The C4 key is near the center of the keyboard
and so is also known as middle C. A piano is usually tuned so that the frequency
of the A4 key is 440 Hz. C4 is nine keys to the left of A4 so its frequency is

C4 = 440σ−9 ≈ 261.6256 Hz

Our EXM program pianoex uses C4 as the center of its 25 keys, so the number
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range is -12:12. The statement

pianoex(0)

generates and plays the sound from a sine wave with frequency C4. The resulting
visual display is shown in figure 20.2.

This for loop plays a two octave chromatic scale starting covering all 25 notes
on our miniature keyboard.

for n = -12:12

pianoex(n)

end

Do Re Mi
One of the first songs you learned to sing was

Do Re Mi Fa So La Ti Do

If you start at C4, you would be singing the major scale in the key of C. This scale
is played on a piano using only the white keys. The notes are not equally spaced.
Most of the steps skip over black keys and so are two semitones. But the steps
between Mi and Fa and Ti and Do are the steps from E to F and B to C. There are
no intervening black keys and so these steps are only one semitone. In terms of σ,
the C-major scale is

σ0 σ2 σ4 σ5 σ7 σ9 σ11 σ12

You can play this scale on our miniature keyboard with

for n = [0 2 4 5 7 9 11 12]

pianoex(n)

end

The number of semitones between the notes is given by the vector

diff([0 2 4 5 7 9 11 12])

= [2 2 1 2 2 2 1]

The sequence of frequencies in our most common scale is surprising. Why are
there 8 notes in the C-major scale? Why don’t the notes in the scale have uniform
frequency ratios? For that matter, why is the octave divided into 12 semitones?
The notes in “Do Re Me” are so familiar that we don’t even ask ourselves these
questions. Are there mathematical explanations? I don’t have definitive answers,
but I can get some hints by looking at harmony, chords, and the ratios of small
integers.

Vibrations and modes
Musical instruments create sound through the action of vibrating strings or vibrat-
ing columns of air that, in turn, produce vibrations in the body of the instrument
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Figure 20.3. The first nine modes of a vibrating string, and their weighted sum.

and the surrounding air. Mathematically, vibrations can be modeled by weighted
sums of characteristic functions known as modes or eigenfunctions. Different modes
vibrate at different characteristic frequencies or eigenvalues. These frequencies are
determined by physical parameters such as the length, thickness and tension in a
string, or the geometry of the air cavity. Short, thin, tightly stretched strings have
high frequencies, while long, thick, loosely stretched strings have low frequencies.

The simplest model is a one-dimensional vibrating string, held fixed at its
ends. The units of the various physical parameters can be chosen so that the length
of the string is 2π. The modes are then simply the functions

vk(x) = sin kx, k = 1, 2, ...

Each of these functions satisfy the fixed end point conditions

vk(0) = vk(2π) = 0

The time-dependent modal vibrations are

uk(x, t) = sin kx sin kt, k = 1, 2, ...

and the frequency is simply the integer k. (Two- and three-dimensional models are
much more complicated, but this one-dimensional model is all we need here.)

Our EXM program vibrating_string provides a dynamic view. Figure 20.3
is a snapshot showing the first nine modes and the resulting wave traveling along
the string. An exercise asks you to change the coefficients in the weighted sum to
produce different waves.

Lissajous figures
Lissajous figures provide some insight into the mathematical behavior of musical
chords. Two dimensional Lissajous figures are plots of the parametric curves

x = sin (at+ α), y = sin (bt+ β)
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Figure 20.4. x = sin t, y = sin 3/2t, z = sin 5/4t.

Figure 20.5. x = sin t, y = sinσ7t, z = sinσ4t.

Three dimensional Lissajous figures are plots of the parametric curves

x = sin (at+ α), y = sin (bt+ β), z = sin (ct+ γ)

We can simplify our graphics interface by just considering

x = sin t, y = sin at
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Figure 20.6. x = sin t, y = sin 5/4t.

Figure 20.7. x = sin t, y = sinσ4t.

and

x = sin t, y = sin at, z = sin bt

The example with a = 3/2 and b = 5/4 shown in figure 20.4. is produced by the
default settings in our exm program lissajous. This program allows you to change
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a and b by entering values in edit boxes on the figure. Entering b = 0 results in a
two dimensional Lissajous figure like the one shown in figure 20.6.

The simplest, “cleanest” Lissajous figures result when the parameters a and b
are ratios of small integers.

a =
p

q
, b =

r

s
, p, q, r, s = small integers

This is because the three functions

x = sin t, y = sin
p

q
t, z = sin

r

s
t

all return to zero when

t = 2mπ, m = lcm(q, s)

where lcm(q, s) is the least common multiple of q and s. When a and b are fractions
with large numerators and denominators, the curves oscillate more rapidly and take
longer to return to their starting values.

In the extreme situation when a and b are irrational, the curves never return
to their starting values and, in fact, eventually fill up the entire square or cube.

We have seen that dividing the octave into 12 equal sized semitones results in
frequencies that are powers of σ, an irrational value. The E key and G keys are four
and seven semitones above C, so their frequencies are

sigma^4

= 1.259921049894873

sigma^7

= 1.498307076876682

The closest fractions with small numerator and denominator are

5/4

= 1.250000000000000

3/2

= 1.500000000000000

This is why we chose 5/4 and 3/2 for our default parameters. If the irrational
powers of sigma are used instead, the results are figures 20.5 and 20.7. In fact,
these figures are merely the initial snapshots. If we were to let the program keep
running, the results would not be pleasant.

Harmony and Intonation
Harmony is an elusive attribute. Dictionary definitions involve terms like “pleasing”,
“congruent”, “fitting together”. For the purposes of this chapter, let’s say that two
or more musical notes are harmonious if the ratios of their frequencies are rational
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numbers with small numerator and denominator. The human ear finds such notes
fit together in a pleasing manner.

Strictly speaking, a musical chord is three or more notes sounded simultane-
ously, but the term can also apply to two notes. With these definitions, chords
made from a scale with equal semitones are not exactly harmonious. The frequency
ratios are powers of σ, which is irrational.

Tuning a musical instrument involves adjusting its physical parameters so
that it plays harmonious music by itself and in conjunction with other instruments.
Tuning a piano is a difficult process that is done infrequently. Tuning a violin or a
guitar is relatively easy and can be done even during breaks in a performance. The
human singing voice is an instrument that can undergo continuous retuning.

For hundreds of years, music theory has included the design of scales and the
tuning of instruments to produce harmonious chords. Of the many possibilities,
let’s consider only two – equal temperament and just intonation.

Equal temperament is the scheme we’ve been describing so far in this chapter.
The frequency ratio between the notes in a chord can be expressed in terms of σ.
Tuning an instrument to have equal temperament is done once and for all, without
regard to the music that will be played. A single base note is chosen, usually A =
440 Hz, and that determines the frequency of all the other notes. Pianos are almost
always tuned to have equal temperament.

Just intonation modifies the frequencies slightly to obtain more strictly har-
monious chords. The tuning anticipates the key of the music about to be played.
Barbershop quartets and a capella choirs can obtain just intonation dynamically
during a performance.

Here is a Matlab code segment that compares equal temperament with just
intonation from a strictly numerical point of view. Equal temperament is defined
by repeated powers of σ. Just intonation is defined by a sequence of fractions.

sigma = 2^(1/12);

k = (0:12)’;

equal = sigma.^k;

num = [1 16 9 6 5 4 7 3 8 5 7 15 2]’;

den = [1 15 8 5 4 3 5 2 5 3 4 8 1]’;

just = num./den;

delta = (equal - just)./equal;

T = [k equal num den just delta];

fprintf(’%8d %12.6f %7d/%d %10.6f %10.4f\n’,T’)

k equal just delta

0 1.000000 1/1 1.000000 0.0000

1 1.059463 16/15 1.066667 -0.0068

2 1.122462 9/8 1.125000 -0.0023

3 1.189207 6/5 1.200000 -0.0091

4 1.259921 5/4 1.250000 0.0079
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5 1.334840 4/3 1.333333 0.0011

6 1.414214 7/5 1.400000 0.0101

7 1.498307 3/2 1.500000 -0.0011

8 1.587401 8/5 1.600000 -0.0079

9 1.681793 5/3 1.666667 0.0090

10 1.781797 7/4 1.750000 0.0178

11 1.887749 15/8 1.875000 0.0068

12 2.000000 2/1 2.000000 0.0000

The last column in the table, delta, is the relative difference between the two. We
see that delta is less than one percent, except for one note. But the more important
consideration is how the music sounds.

Chords
.

Figure 20.8. Dissonace and beats between two adjacent whole notes.

Chords are two or more notes played simultaneously. With a computer key-
board and mouse, we can’t click on more than one key at a time. So chords are
produced with pianoex by selecting the toggle switches labeled 1 through 12. The
switch labeled 0 is always selected.

Figure 20.8 shows the visual output generated when pianoex plays a chord
involving two adjacent white keys, in this case C and D. You can see, and hear, the
phenomenon known as beating. This occurs when tones with nearly equal frequencies
alternate between additive reinforcement and subtractive cancellation. The relevant
trig identity is

sin at+ sin bt = sin
a+ b

2
t cos

a− b

2
t
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The sum of two notes is a note with the average of the two frequencies, modulated
by a cosine term involving the difference of the two frequencies. The players in an
orchestra tune up by listening for beats between their instruments and a reference
instrument.

The most important three-note chord, or triad, is the C major fifth. If C is the
lowest, or root, note, the chord is C-E-G. In just intonation, the frequency ratios
are

1 :
5

4
:
3

2

These are the parameter values for our default Lissajous figure, shown in figure
20.4. Figures 20.9 and 20.10 show the visual output generated when pianoex plays
a C major fifth with just intonation and with equal temperament. You can see that
the wave forms in the oscilloscope are different, but can you hear any difference in
the sound generated?

Figure 20.9. C major fifth with just intonation.

Synthesizing Music
Our pianoex program is not a powerful music synthesizer. Creating such a program
is a huge undertaking, way beyond the scope of this chapter or this book. We merely
want to illustrate a few of the interesting mathematical concepts involved in music.

The core of the pianoex is the code that generates a vector y representing the
amplitude of sound as a function of time t. Here is the portion of the code that
handles equal temperament. The quantity chord is either a single note number, or
a vector like [0 4 7] with the settings of the chord toggles.

sigma = 2^(1/12);
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Figure 20.10. C major fifth with equal temperament.

C4 = 440*sigma^(-9);

fs = 44100;

t = 0:1/fs:T;

y = zeros(size(t));

for n = chord

hz = C4 * sigma^n;

y = y + sin(2*pi*hz*t);

end

y = y/length(chord);

Here is the corresponding portion of code for just intonation. The vector r of ratios
is repeated a few times, scaled by powers of 2, to cover several octaves.

sigma = 2^(1/12);

C4 = 440*sigma^(-9);

fs = 44100;

t = 0:1/fs:T;

r = [1 16/15 9/8 6/5 5/4 4/3 7/5 3/2 8/5 5/3 7/4 15/8];

r = [r/2 r 2*r 4];

y = zeros(size(t));

for n = chord

hz = C4 * r(n+13);

y = y + sin(2*pi*hz*t);

end

y = y/length(chord);

A small example of what a full music synthesizer would sound like is provided by
the “piano” toggle on pianoex. This synthesizer uses a single sample of an actual
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Figure 20.11. C major fifth chord with simulated piano.

piano playing middle C. This sample is loaded during the initialization of pianoex,

S = load(’piano_c.mat’);

middle_c = double(S.piano_c)/2^15;

set(gcf,’userdata’,middle_c)

A function from the Matlab Signal Processing Toolbox is then used to generate
notes at different frequencies.

middle_c = get(gcf,’userdata’);

fs = 44100;

t = 0:1/fs:T;

y = zeros(size(t));

for n = chord

y = y + resamplex(middle_c,2^(n/12),length(y));

end

Figure 20.11 displays the piano simulation of the C major fith chord. You can
see that the waveform is much richer than the ones obtained from superposition of
sine waves.

Further Reading, and Viewing
This wonderful video shows a performance of the “Do Re Mi” song from “The Sound
of Music” in the Antwerp Central Railway Station. (I hope the URL persists.)

http://www.youtube.com/watch?v=7EYAUazLI9k

Wikipedia has hundreds of articles on various aspects of music theory. Here is one:
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http://en.wikipedia.org/wiki/Music_and_mathematics

Wikipedia on Lissajous curves:

http://en.wikipedia.org/wiki/Lissajous_curve

Recap
%% Music Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Music Chapter of "Experiments in MATLAB".

% You can access it with

%

% music_recap

% edit music_recap

% publish music_recap

%

% Related EXM programs

%

% pianoex

%% Size of a semitone, one twelth of an octave.

sigma = 2^(1/12)

%% Twelve pitch chromatic scale.

for n = 0:12

pianoex(n)

end

%% C major scale

for n = [0 2 4 5 7 9 11 12]

pianoex(n)

end

%% Semitones in C major scale

diff([0 2 4 5 7 9 11 12])

%% Equal temperament and just intonation

[sigma.^(0:12)

1 16/15 9/8 6/5 5/4 4/3 7/5 3/2 8/5 5/3 7/4 15/8 2]’

%% C major fifth chord, equal temperament and just temperament
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[sigma.^[0 4 7]

1 5/4 3/2]’

Exercises

20.1 Strings. The Wikipedia page

http://en.wikipedia.org/wiki/Piano_key_frequencies/

has a table headed “Virtual Keyboard” that shows the frequencies of the piano keys
as well as five string instruments. The open string violin frequencies are given by

v = [-14 -7 0 7]’

440*sigma.^v

What are the corresponding vectors for the other four string instruments?

20.2 Vibrating string. In vibrating_string.m, find the statement

a = 1./(1:9)

Change it to

a = 1./(1:9).^2

or

a = 1./sqrt(1:9)

Also, change the loop control

for k = 1:9

to

for k = 1:2:9

or

for k = 1:3:9

What effect do these changes have on the resulting wave?

20.3 Comet. Try this:

a = 2/3;

b = 1/2;
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tfinal = 12*pi;

t = 0:pi/512:tfinal;

x = sin(t);

y = sin(a*t);

z = sin(b*t);

comet3(x,y,z)

Why did I choose this particular value of tfinal? How does this tfinal depend
upon a and b?

20.4 Dissonant Lissajous. What is the Lissajous figure corresponding to two or
three adjacent keys, or adjacent white keys, on the piano keyboard?

20.5 Irrational biorhythms. The biorhythms described in our “Calendars and Clocks”
chapter are based on the premise that our lives are governed by periodic functions of
time with periods of 23, 28 and 33 days. What is the effect of revising biorhythms.m
so that the periods are irrational values near these?

20.6 Just intonation. With just intonation, the ratios of frequencies of adjacent
notes are no longer equal to σ. What are these ratios?

20.7 Rational intonation. Matlab almost has the capability to discover just intona-
tion. The Matlab function rat computes rational approximations. For example,
the following statement computes the numerator n and denominator d in a rational
approximation of π.

[n,d] = rat(pi)

n =

355

d =

113

This gives us the approximation π ≈ 355/113, which is accurate to 7 significant
figures. For a less accurate approximation, specify a tolerance of 2 percent.

[n,d] = rat(pi,.02)

n =

22

d =

7

This gives us the familiar π ≈ 22/7.
(a) Let’s have rat, with a tolerance of .02, generate rational approximations to the
powers of σ. We can compare the result to the rational approximations used in just
intonation. In our code that compares equal temperament with just intonation,
change the statements that define just intonation from

num = [...]



278 Chapter 20. Music

den = [...]

to

[num,den] = rat(sigma.^k,.02);

You should see that the best rational approximation agrees with the one used by
just intonation for most of the notes. Only notes near the ends of the scale are
different.

• 18/17 vs. 16/15 for k = 1

• 9/5 vs. 7/4 for k = 10

• 17/9 vs. 15/8 for k = 11

The approximations from rat are more accurate, but the denominators are
primes or powers of primes and so are less likely to be compatible with other de-
nominators.
(b) Change the tolerance involved in using rat to obtain rational approximations
to powers of σ. Replace .02 by .01 or .10. You should find that .02 works best.
(c) Modify pianoex to also use the rational approximations produced by rat. Can
you detect any difference in the sound generated by pianoex if these rat approxi-
mations are incorporated.

20.8 Musical score. Our pianoex is able to process a Matlab function that repre-
sents a musical score. The score is a cell array with two columns. The first column
contains note numbers or chord vectors. The second column contains durations. If
the second column is not present, all the notes have the same, default, duration.
For example, here is a C-major scale.

s = {0 2 4 5 7 9 11 12}’

pianoex(s)

A more comprehensive example is the portion of Vivaldi’s “Four Seasons” in the
EXM function vivaldi.

type vivaldi

pianoex(vivaldi)

Frankly, I do not find this attempt to express music in a macine-readable form very
satisfactory. Can you create something better?


